HYDRAULIC INSTITUTE™

PUMP TRAINING RESOURCES BROUGHT TO YOU BY **PUMP SYSTEMS MATTER**®

Pump System Assessment Course

Pumping System Assessment

FloFab

Instructor: Alex Kramer

Date: September 2018

Course Overview

1. Pump World – 1-1/2hrs

Hydraulic Institute Introduction to Pumping Systems

2. Water World – 1-1/2hrs

Pump System Types in Commercial Buildings Examples

3. Flow Control & DHW - 1-1/2hrs

Methods of Controlling Pumps Variable Frequency Drives Conclusions

Hydraulic Institute and Pump Systems Matter

Introduction

- About the Hydraulic Institute: The mission of the Hydraulic Institute is to be a value-adding resource to member companies, engineering consulting firms, and pump users worldwide by developing and delivering comprehensive industry standards, expanding knowledge by providing education and tools for the effective application, testing, installation, operation, maintenance, and performance optimization of pumps and pumping systems, and by serving as a forum for the exchange of industry information. For more information on the Hydraulic Institute, its member companies and its partners, visit www.Pumps.org
- Pump Systems Matter: Established by the Hydraulic Institute, and leading utilities and energy efficiency organizations, PSM provides educational resources on the benefits to pump systems optimization and energy efficiency to improve bottom-line savings of end-user companies. PSM offers a robust schedule of webinars on pumps and pumping systems, based on HI standards and industry guidelines, and offers Pump Optimization course hosting opportunities to pump and supplier OEMs, pump distributors, energy efficiency organizations, water/wastewater utilities, electric power utilities and associations.

HI Activities are Organized Around the Principle that Sound Technical Expertise will Educate and

Educational Case Studies Working with Other Institutions: "Pump System Optimization" Case Studies

Pump World

Use Energy Consumption

Source: US Department of Energy - Buildings Energy Data Book (2010)

Pump Systems Have Greatest Energy-Saving Potential Across All Industries

20 Year Life Cycle Cost of Conventional 75HP Pumping System

Initial Costs are the Wrong Focus

Example: Lifetime Energy Costs of a Motor

Example: 100 HP motor @ \$0.08/kWh electricity (\$54K/yr) 24/7 for 15-yr life

Key Concept

Key Points

- Most pump systems are oversized
- Look beyond energy savings,
- Evaluate the entire system,
- Life time energy cost is a major cost compared to first cost

Think System

Component Optimization involves segregating components and analyzing in isolation.

System Optimization involves looking at how the whole group functions together and how changing one can help improve the value of the entire application solution.

At each interface, there are inefficiencies. The primary objective should be to maximize the overall cost effectiveness of the entire system, or simply stated ... "how much output energy is delivered per unit of input energy."

Coupling

System

Gearbox

Pump

Energy Efficiency Improvements

Look at Entire System to Save Energy

Process	Flow required	17200 gpm	17200 gpm	17200 gpm	17200 gpm
Requirements	Head required	200 feet	150 feet	200 feet	200 feet
Piping elements	Additional system friction loss	50 ft	0 ft	50 ft	55 ft
	Motor eff	94%	94%	94%	96%
Component	VFD efficiency factor	100%	98%	100%	100%
Efficiencies	Mechanical drive eff	100%	100%	100%	100%
	Pump eff	65%	88%	70%	65%
Fleetrical	Energy cost per kWh	\$0.05	\$0.05	\$0.05	\$0.05
Electrical	Operating hours per year	6250	6250	6250	6250
			Reduce friction	Increase pump	Increase motor
	Factor	Base	by 50 feet	efficiency by 5	efficiency by 2
			by ou leet.	points.	points.
	System efficiency	49%	8 1%	53%	49%
	System input power required for process	1421.7 bhp	803.7 bhp	1320.2 bhp	1392.1 bhp
Output	Power required for additional friction	355.4 bhp	0.0 bhp	330.0 bhp	382.8 bhp
Output	Total power required	1777.2 bhp	803.7 bhp	1650.2 bhp	1775.0 bhp
	Total cost per year	\$414,306	\$187,360	\$384,712	\$413,788
	Cost Savings		\$226,946	\$29,593	\$518
1	2	Α	В	С	D

Typical Pump System Components

Centrifugal Pump Facts

Centrifugal pumps should be selected and normally operated at or near the manufacturer's design rated conditions of head and flow.

The System: What is a System Curve?

A system curve represents the sum of the static head and the friction loss due to flow of fluid through a system. The pumping system will operate where the pump and system curves intersect System curves help demonstrate pumping system behavior in

a graphical manner

If a system curve can be determined, it can help identify the effects of pump and/or system modifications

System Optimization and Improvement Opportunities

- Eliminate unnecessary uses
- Improve Operations & Maintenance (O&M) practices
- Improve piping configuration
- Consider alternative pump configurations
- Change pump speed

More System Optimization Opportunities

- Using a pump when the fluid is not needed
- Running two pumps when only one is needed
- Continuing to run pumps in a batch-type process when products are not being produced
- Excessive pump head or flow

Friction in Pump Systems

- Friction occurs in pump systems due to irrecoverable hydraulic losses
- Friction is also used to control flow or pressure, recoverable hydraulic losses

Throttling Valves and Friction

Effects of a Control/Throttling Valve

Pump Reliability and BEP

Data for Specific Area of Pump Curve

Pump Affinity Rules

Pump Affinity Rules

Speed	Volume	Pressure/ Head	Horsepower Required
100%	100%	100%	100%
90%	90%	81%	73%
80%	80%	64%	51%
70%	70%	49%	34%
60%	60%	36%	22%
50%	50%	25%	13%
40%	40%	16%	6%
30%	30%	9%	3%

Pump and System Curves

Pump Selection Process

Annual Energy Use Estimation

Best Energy Efficiency Estimation

- If we have to select a pump in a group, the one which will use minimum energy input, maximizes the correlation between Efficiency and Energy output
- This happens for the pump which has its best efficiency curve closest to the Energy output "center of mass"
- The information usually available is the efficiency curves and values
- The pump has to be able to provide the design day flow and diff pressure

Smart selection of the right equipment for the application

Best Energy Efficiency Selection

- The determination of the output energy "center of mass" depends heavily on the flow profile
- The flow profile depends on:
 - The type of building (school, residential, hospital, data center, mixed...), which determine the occupancy patterns and use. I.e. internal loads profile
 - The location (weather) and building insulation.
 I.e. external load profile
 - 3. The presence of heat recovery and free air cooling
 - 4. The pump application (primary, secondary, condenser)
 - 5. The fluid type and temperature control method

Best Energy Efficiency Selection – Rules of Thumb

If all that info is not available, then use the following "center of mass", relative to the design day flow and head:

			Flow	Head	*	•
•	Secondary pumps	0.5	0.65		*	
•	Primary pumps in VP/VS	1	1		\star	*
•	Distribution primary pumps ().5	0.4		+	\rightarrow
•	VS condenser pumps	0.7	0.5			►

 CS condenser pumps should be designed for 12 to 14[°]F design day ΔT (see "Optimizing Design &Control of Chilled Water Plants Part 4 Chiller & Cooling Tower Selection", ASHRAE Journal, Mar 2012)

Life Cycle Costs: Energy Is Only Part Of The Story

	Constant Speed Pump	Variable Speed Pump	Smart Pump
Initial Cost	\$150,000	\$200,000	\$215,000
Installation Cost	\$34,500	\$47,000	\$37,000
Annual KwhR (Reactive)	140,515	58,789	58,789
Total Energy Cost (P.V.)	\$174,961	\$73,200	\$53,200
Operating Cost (P.V.)	\$451,300	\$338,475	\$305,116
Repair/Maint. Cost (P.V.)	\$56,412	\$66,715	\$45,652
Downtime Cost (P.V.)	\$112,825	\$98,615	\$56,000
Environmental Cost (P.V.)	\$5,614	\$5,614	\$5,614
Disposal Cost (P.V.)	\$232	\$232	\$232
Scrap Value (P.V.)	(\$673)	(\$673)	(\$673)
Depreciation (P.V.)	(\$45,168)	(\$52,251)	(\$52,251)
Present Value of Cost	\$940,003	\$776,927	\$664,890

- 20 year life cycle
- Annual Discount Rate 6%
- Customer Tax Rate 31%
- Straight Line Depreciation Over 7 Years

- \$0.1 per kWh
- Energy cost increases 5%/year

The above is an example to give relative cost information

Non-energy inflation 4%

Adjusting for Impeller Diameter

Adjusting Pump Head Curve for Different Speeds

Friction-Dominated System

Indicators of Poor System Energy Optimization

- Valve throttling increases system head resulting in excess power consumption
- Excess energy noted in blue area
- Excess energy impacts equipment reliability

- Bypass lines require more flow, which results in excess power consumption.
- Excess energy impacts equipment reliability

Pump System Prescreening Spreadsheet

A = High Priority	ey fields indicate priority data entries																											
B = Med Priority			•	Equip	ment Information						Contro	İschem	ies				Operati	ng Parame	eters					Other		Addi	tional Information	
No Action										(cł	eck a	ll that a	pply)	(1	provide if rea	adily availa	able, otherv	vise indica	te with	check if i	t is acquir	able)	syn	nptoms		(is acquirable?)	
			_						_		_					-												
Priority	System rame/description	Pump Type [MC, PD, Vacuum, Centrifugal]	Certified Pump Performance Curve	Pump ID/process area	Motor name plate data	Service (e.g. utility, process, etc.)	Time in service (years)	Indicate shared duty pump systems/ in service spares Vortage	Adjustable speed drive	Throttled (% open if available)	On/off	More than one pump/split	Not controlled (pumps just	Operating hours or % of time equipment operates	Power or Current	Flow requirements have changed or are expected to change	Design flow rate	Operational flow rate	Design head	Operational head Static head	Upstream pressure	Downstream pressure (after control valve, or	Dypass line, etc) Cavitation at pump or in evetam?	System maintenance level (Hi/Med/Lo)	Typical flow rates and variation thereof	Duration diagrams	Maintenance Costs	PID / DCS screen-shots
A = High Priority																												
B = Med Priority				1																								
																					_		_	_				
			_						_		_										_	_	_	_				
									+		-										-	-	-	-				
									-		-				<u> </u>						-	_	-	-				
			-	-					-		-						-			-	-		-	-				
																		-			-			-				
																							_					
																							_		I	L		
		l							_	+	_										_	_	_	-		l		
		I																			_	-	_	-				
		I							_									-			_	-	_	-				
				l					_	+	_										_	_	_					+
		I	1		1												1	1							1	1		

Suction Specific Speed NSS Calculator

	Suction Specific Speed (NSS) Calculator													
N =	3560	Pump S	haft Rota	tion Speed	l (rpm)									
Q =	Q = 800 Flow Rate Capacity (m3/h, m3/min, US gpm, British gpm) at Best Efficiency Point (BEP)													
NPSHr =	18	Required	d Net Pos	itive Suctio	on Head fo	r the pum	o at the BEI	P (m, ft)						
NSS =	8147.5	Suction	Specific	Speed										
	Rule of Thumb: Nss Should be Below 8500 with US GPM, to Avoid Cavitation													

Variable Speed Pumping Analyzer

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 H1 H2 H3 H4 H5 H6 H8 H7 45.4 90.8 136.2 181.7 227.1 272.5 317.9 363.3 49.9 49.6 49.0 48.1 46.3 44.2 41.1 37.5

Series/Parallel Calculator

Parallel Operation Similar Pumps (Pumps 1 & 2)

700

800

Q4 / H4

Q5 / H5

Q6 / H6

Q7 / H7

Q8 / H8

Q3 / H3

Parallel Operation Identical Pumps (Pump 1)

300

400

Gallons Per Minute

500

600

50

0

0

100

200

Proprietary and Confidential of Hydraulic Institute

Darcy Friction Loss Calculator

Given Data								
Flow Rate (O)	m3/hr	8	0.00222	m3/s				
Pine Inside Diameter (D)	mm	53.7	0.00222	m				
Kinematic Viscosity ()	cSt	1	1 000E-06	m2/s			OALOOLA	
Specific Boughness (6)	m	1 505-06	1.0002-00	1112/3				
Pipe Length (L)	m	1.00⊑-00 230						
· .po _og (_)								
Calculated Data								
Average Velocity - V (m/s)		0.98						
Reynolds Number		52689						
Darcy Friction Factor		0.021						
Head Loss - Pipe (m)		4.34			TOTAL HEAD LOSS, h _f (m)	5.06		
					↑			
Calculated Head Loss in Fittings, V	/alves, En	trances & E	xits					
		К	Qty	Sub Total K				
Angle Valve		5	0	0				
Ball Valve, Full Port		0.05	2	0.1				
Butterfly Valve		0.6	0	0				
Check Valve, Swing Type		2.3	1	2.3				
Elbow 45 Degrees		0.4	0	0				
Elbow 90 Degrees, Long Radius		0.6	0	0				
Elbow 90 Degrees, Standard		0.9	12	10.8				
Flow Meter, Turbine Type		7	0	0				
Foot Valve		0.9	0	0				
Gate Valve		0.2	0	0				
Globe Valve		10	0	0				
Pipe Entrance, Inward Projected Pipe		1	0	0				
Pipe Entrance, Sharp Edge		0.5	1	0.5				
Pipe Exit		1	1	1				
Tee, Standard, Flow Through Branch		1.8	0	0				
		0.6	0	0				
Tee, Standard, Flow Through Run								
Tee, Standard, Flow Through Run				14.7				

System Energy Calculator

Required Data	Option 1	Option 2		
System Condition:	Steel Pipe	Steel Pipe		
	8" 600'	<mark>6" 600</mark> '		
Pump Operation - Hours / Day	8	8		
Pump Operation - Days / Year	365	365		
Pump Flow - GPM	600	600		
Pump Head - Feet	50	65		
Pump Efficiency - %	<mark>71%</mark>	71%		
Motor Efficiency - %	82.0%	82.0%		
Energy Cost in \$/KWH	\$0.11	\$0.11		
Results				
BHP At Design Point	10.7	13.9		
Wire to Water Efficiency - %	<mark></mark>	58%		
Annual Energy Cost	\$3,117.94	\$4,053.33		
KW Per 1000 Gallons Pumped	0.270	0.351		
Cost Per 1000 Gallons Pumped	\$0.030	\$0.039		
РАҮВАСК				
Annual Savings - \$\$	\$935.38			
Annual Savings - %	23.08%			
Cost of Option 1	\$12,000.00			
Cost of Option 2	\$9,000.00			
Payback - Years	3.2			

Motor Yearly Energy Cost Calculator

Site Energy Cost (KW/Hour)	Site De	emand Charge (K		Year)	Estima ted N	/lotor Usage (H	Hrs/Year)
\$0.060		\$75.00				8760	
Synchronous Motor Charac	teristics		\square	Indu	ction Motor	Characteri	stics
Horsepower				Horsepowe	er		
Power Factor				Power Fact	tor		
Efficiency				Efficiency			
Kilowatts				Kilowatts			
Total KVA				Total KVA			
Yearly Energy Cost	i			Yearly Ene	rgy Cost		
Yearly Demand Cost				Yearly Dem	hand Cost		
Synchronous Yearly End	ergy Savi	ings Due to	Eff	iciency			
Synchronous Yearly Er	hergy Sav	/ings Due to		emand			
Total Yearly Ener	rgy Savin	gs Using Sy	/nc	hronou	s Motor Te	chnology	
Total Life Cycle Energy S	Savings U	Jsing Synch	ro	nous Mo	tor Techn	ology (per	motor)

PSIM Tool

Proprietary and Confidential of Hydraulic Institute

Case Study Using PSIM

Building the Model Using PSIM

Entering the Pipe Data

nber.	1		Upstream Junction:	1	QK
De:	Pipe		Downstream Junction:	2	Cancel
y Dgta From Pipe	, [Copy Previous		Help
pe Model Fitting	s & Losses 0	ptional Status			
Size			Leggth		
Pipe Material:	Steel	<u> </u>	20 feet	2	
Pipe Ggometry:	Cylindrical R	Pipe 💌	feet	A A	
Sige:	4 inch	<u> </u>	microinche miles	es	
Type:	STD (sch	vedule 40)			
Inner Diameter:	4.026	inches 💌			
Friction Model					
Data Set		A	bsolute Roughness	 Load Default 	1
C Unspecified		0	0018 inches	•	-
(• Standard		<u> </u>	· · · · ·	_	

System Predictions Based on Model

BE	e Edit	View Anal	ysis Ar	range 🤇	ptions	Window	Help							5 ×
e 1		@ »·	8		•	Show: Ge	neral, Pipes	and June	ctions 💌	通督				
Gene	al Wan	nings Cost	Report	Pump	Summary	Valve S	ummary H	eat Excha	anger Summ	ary Rese	rvoir Summ	nary		
Jct	Name	Vol. Flow (gal/min)	dH (feet)	Overa Efficien (Percer	ll Ov cy Po ht) (h	erall E wer p) (U.S	nergy Cost Dollars)	BEP gal/min)	% of BEP (Percent)	NPSHA (feet)	NPSHR (feet)			
2	Pump	367.4	174.3	63	.85 2	5.36	63,261	243.0	151.2	60.13	26.8	6		
Pipes Pipe	Name	Vol. Flow Rate	e Vel	ocity I	P Static Max	P Static Min (psia)	dP Stag. Total (osid)	dP Stati Total	ic dH	P Static In	P Static Out (psia)	P Stag. In	P Stag. Out	Ĥ
1	Pipe	367	4	9,260	26.29	25.65	0.6328	0.63	28 1.460	26.29	25.65	26.86	26.23	
2	Pipe	367	4	9.260	101.20	99.62	1.5818	1.58	18 3.649	101.20	99.62	101.78	100.20	
3	Pipe	184	3	7.997	99.77	97.76	2.0053	2.00	53 4.627	99.77	97.76	100.20	98.19	-
All Ju	nctions	Database S	ources	Branch	Heat	xchanger	Pump	Reservoir	Valve					
Jct	Na	me I	P Static In (psia)	P Stati Out (psia)	c PSt Ir (psi	ag. PSta i Ou a) (psi	ag. Vol. t RateJ a) (gal/	Flow Ict Net /min)	Mass Flow Rate Jct Ne (Ibm/sec)	t Factor	(K)			Ê
1	Supply T	ank	24.70	26.1	36 24	1.70 26	6.86	-367.4	-51.0	9 (0.00			
2	Pump		25.65	101.3	20 20	5.23 101	.78	0.0	0.0	0 0	0.00			-
3	Tee Al/us	•	99 72	99 :	72 10	1 20 100	120	0.0	0.0	0 0	0.00			
		CONTROL	PROPE	R TIES	ENERGY COST	DEFINE +JUNC	PIPES		C.				9 🖸	9

Graphically-Illustrated Options

Hot Water World

Proprietary and Confidential of Hydraulic Institute

RESOURCE: http://www.grundfos.com/content/dam/Global%20Site/campaigns/Grundfos-isolutions/5/download-pdfs/1013669 GFS CBS Poster A0 841x1189 ART10 CM.pdf

Piping and Pumping Systems Can Be Very Complex

Proprietary and Confidential of Hydraulic Institute

Pump System Types in Commercial Buildings

1.Temperature Control

- a) Heating system applications
- b) Cooling system applications

2.Plumbing systems

- a) Domestic water applications
- b) Drainage applications

Heating Applications

- Primary, secondary and tertiary loops
- Mixing loops
- Steam
 - Boiler feed
 - Condensate return
 - Etc.
- Geothermal
- Solar
- District heating

Heating Optimization Targets

Primary, Secondary, and Tertiary loops	Х
Mixing loops	
Steam:	
Boiler Feed	Х
Condensate return	
Collection tank pumps	
Water treatment pumps	
Deaerator tank recycle pumps	
Economizer pumps	Х
Deaerator vacuum pumps (vacuum deaerator tanks only)	
Geothermal	
Solar	
District heating	Х

Cooling Applications

- Primary, Secondary, and Tertiary loops
- Condenser water
- Thermal energy storage
- Cooler tower
- Geothermal
- District cooling

Cooling Optimization Targets

Primary, Secondary, and Tertiary loops	Х
Condenser water	Х
Cooling tower	Х
Thermal energy storage	
Geothermal	
District cooling	Х

Domestic Water Applications

- Booster system
 - With break tank
 - With connection to water main
 - With roof tank
- Water transfer to roof tank
- Hot water recirculation
- Landscaping
- Swimming pool

Domestic Water Optimization Targets

Booster system:	
With Hydro-pneumatic tank	Х
With connection to water main	Х
With roof tank	
Water transfer to roof tank	
Hot water recirculation	Х
Landscaping	Х
Swimming pool	

Drainage Applications

- Storm drainage
- Drainage from facility rooms
- Emptying of pools and tanks
- Laundry
- Effluent/sewage
- Elevator sump
- Parking garages

Drainage Optimization Targets

Storm drainage	Х
Parking garages	Х
Drainage from facility rooms	
Laundry	
Emptying of pools and tanks	
Effluent/sewage	Х
Elevator sump	

Example: Domestic Water Pressure Booster Optimization

Proprietary and Confidential of Hydraulic Institute

Domestic Pressure Boosting Example – Specification (Open System)

- Constant pressure system 50 psi
- Multi-story building
- Duty point 400 gpm at 300 feet
- Second flow point 300 gpm
- Third flow point 200 gpm
- Fourth flow point 100 gpm
- Load profile next slides
- 50 psi municipal water supply

Curve Comparison

Fixed Speed Pump

Variable Speed Pump

Annual Power Consumption

Expected pump life: 1 years	Load Profile #1	Load Profile #2	Load Profile #3	Load Profile #4	Load Profile #5	Total
Flow: (USgpm)	400.0	300.0	200.0	100.0	-	-
Operation: (hours per year)	250	500	1,000	2,000	-	3,750
Energy cost, present value (per kWh)	0.1000	0.1000	0.1000	0.1000	-	-
Speed, rated (rpm)	3540	3540	3540	3540	-	-
Head (ft)	310.0	396.9	449.1	466.4	-	-
Efficiency (%)	75.03	77.97	68.33	43.97	-	-
Rated power (based on duty point) (hp)	41.73	38.56	33.18	26.78	-	-
Motor efficiency (%)	93.00	94.00	93.00	92.00		-
Drive/gear efficiency (%)	100.00	100.00	100.00	100.00		-
System curve	System Curve #1	System Curve #2	System Curve #3	System Curve #4	-	-
Energy, total (kWh)	8,364.2	15,292.9	26,607.6	43,410.6	-	93,675.5
Energy cost, per year	836.42	1,529.29	2,660.76	4,341.06	-	9,367.55
Energy cost, total present value	812.75	1,486.01	2,585.46	4,218.20	-	9,102.43

Expected pump life: 1 years	Load Profile #1	Load Profile #2	Load Profile #3	Load Profile #4	Load Profile #5	Total
Flow: (USgpm)	400.0	300.0	200.0	100.0	-	-
Operation: (hours per year)	250	500	1,000	2,000	-	3,750
Energy cost, present value (per kWh)	0.1000	0.1000	0.1000	0.1000	-	-
Speed, rated (rpm)	3505	3184	2948	2846	-	-
Head (ft)	300.0	300.0	300.0	300.0	-	-
Efficiency (%)	74.65	78.36	73.79	51.48	-	-
Rated power (based on duty point) (hp)	40.59	29.00	20.54	14.72	-	-
Motor efficiency (%)	93.00	92.00	83.00	70.00		-
Drive/gear efficiency (%)	97.00	96.00	95.00	91.00		-
System curve	System Curve #1	System Curve #2	System Curve #3	System Curve #4	-	-
Energy, total (kWh)	8,388.3	12,244.3	19,425.8	34,466.7	-	74,525.1
Energy cost, per year	838.83	1,224.43	1,942.58	3,446.67	-	7,452.51
Energy cost, total present value	815.09	1,189.77	1,887.60	3,349.13	-	7,241.59

Variable Speed Pump

Annual power consumption

Expected pump life: 1 years	Load Profile #1	Load Profile #2	Load Profile #3	Load Profile #4	Load Profile #5	Total
Flow: (USgpm)	400.0	300.0	200.0	100.0	-	-
Operation: (hours per year)	250	500	1,000	2,000	-	3,750
Energy cost, present value (per kWh)	0.1000	0.1000	0.1000	0.1000	-	-
Speed, rated (rpm)	3540	3540	3540		-	-
Head (ft)	310.0	.0.9	449.1	466.4	-	-
Efficiency (%)	75.02	77.9	68	43.0	-	-
Rated power (based on duty point) (hp)	41.75	38:50	33.18	26.78	-	-
Motor efficiency (%)	93.00	94.00	93.00	92.00	-	-
Drive/gear efficiency (%)	100.00	100.00	100.00	100.00	-	-
System curve	System Curve #1	System Curve #2	System Curve #3	System Curve #4	-	-
Energy, total (kWh)	8,364.2	15,292.9	26,607.6	43,410.6	-	93,675.
Energy cost, per year	836.42	1,529.29	2,660.76	4,341.06	-	9,367.55
Energy cost, total present value	812.75	1,486.01	2,585.46	4,218.20	-	9,102.43

	Expected pump life: 1 years	Load Profile #1	Load Profile #2	Load Profile #3	Load Profile #4	Load Profile #5	Total
	Flow: (USgpm)	400.0	300.0	200.0	100.0	-	-
	Operation: (hours per year)	250	500	1,000	2,000	-	3,750
	Energy cost, present value (per kWh)	0.1000	0.1000	1000	0.1000	-	-
	Speed, rated (rpm)	3505		2948	2846	-	-
	Head (ft)	300.0	300.0	300,0	300.0	-	-
	Efficiency (%)	74.67	78	73	51	-	-
	Rated power (based on duty point) (hp)	40.00	29.00	20.54	14.72	-	-
	Motor efficiency (%)	93.00	92.00	83.00	70.00	-	-
	Drive/gear efficiency (%)	97.00	96.00	95.00	91.00	-	-
	System curve	System Curve #1	System Curve #2	System Curve #3	System Curve #4	-	-
	Energy, total (kWh)	8,388.3	12,244.3	19,425.8	34,466.7	-	74,52
	Energy cost, per year	838.83	1,224.43	1,942.58	3,446.67	-	7,452.51
	Energy cost, total present value	815.09	1,189.77	1,887.60	3,349.13	-	7,241.59

Variable Sleed Pump

Advantages of Variable Speed Pumps in Pressure Booster Applications

- Saves at least 30% energy usage
- Eliminates need for throttling Valves & their energy Loss
- Reduces size of Hydro-pneumatic tank
- Steadier pressures as usage varies Improved control
- Matches actual flow rate to system requirements
- Reduced wear on pumps/motors- No across line start
- Elimination of water hammer

Example: Boiler Feed Pump Optimization

http://www.bls.gov/ooh/production/stationary-engineers-and-boiler-operators.htm#tab-4

Fixed speed pump with feed valve and with bypass line

Variable speed pumps less feed valve and less bypass line

Fixed Speed Pump⁺vs Variable Speed⁺ Pump

Summary of Duty Point Performance Characteristics

		Boiler	Use				Pump		
	Speed	Maximum	Feed	Use Bypass	Flow in	Head	Size	Number	BHP at
Pump #	Туре	Horsepower	Valve?	Line?	gpm	in feet	Inches	of Stages	Duty Point
1	Fixed	250	Yes	Yes	28	272	1.25 x1.25	11	3.0
2	Variable	250	No	No	23	237	1.25 x1.25	9	2.3

This data shows the potential for power savings at one duty point. But what about at reduced rates of steam production and reduced flow rates? The percentage of savings can be even greater than shown here. And the savings demonstrated in this example can be extended to larger boiler feed systems.

Advantages of Variable Speed Pumps in Boiler Feed Applications

- Even steam production
- Faster reaction with changed speed
- Smaller loss of water
- Fewer stages lower initial cost
- Eliminate feed valve expense, maintenance, and head loss
- Eliminate bypass line expense and wasted flow recirculation
- Smaller HP motor
- Reduced water treatment costs
- Reduced energy consumption and costs
- The downside to this variable speed system is that it requires precise commissioning and start-up, and requires highly qualified technicians.

Example: Cooling Tower Pump Optimization

Cooling Tower Example - Specification

- Duty point = 2000 gpm at 80 feet of head
- Second flow rate point = 1500 gpm
- Third flow rate point = 1000 gpm
- Fourth flow rate point = 500 gpm
- Pump type Horizontal split case

Curve Comparison

(gpm X Feet of Head) ÷ Pump Efficiency X 3960)

Fixed = (500 X 103) ÷ (.86 X 3960) = 15.1 BHP

Variable = (500 X 103) ÷ (.85 X 3960) = 11.9 BHP

Building Loads

- Commercial buildings use chilled water systems for cooling, and hot water systems for heating and domestic water for consumption
- These systems operate at less than full load or part-load the vast majority of the time.
- The emphasis on meeting design day heating and cooling loads results in oversized pumps.
- A systems approach will typically yield a more efficient, more reliable and quiteter hydronic system.

Building Load Profile

Most systems operate at less than 60% capacity, 90% of the time or more.

Standby versus Redundancy

Redundancy

Percent of Design Point heat

	80% Flow	85% Flow
45°F	85	87
42°F	95	97
41°F	98	100
40°F	101	103
39°F	104	107

Not All Projects Require Complete Pump Replacement

Constant Speed Pumps Retrofit What is Involved?

- Retain casing
- Install a variable speed rotating assembly (new motor/drive/impeller, adapter, flush line and seal)
- No piping changes, no new insulation and no pressure testing required!
- Has to be done by a professional

Equipment to be Covered

- Source Equipment
 - Boilers
 - Chillers
- Cooling Towers/Economizer
- Expansion Tanks
- Air Separators
- Heat Emitters (Fan coils, AHU)
- Control Valves
- Balance Valves & Automatic Flow Limiters

Types of Boilers

Gas or oil fired hydronic boilers

- Non-condensing: Minimum 130°F return temp
 - Cast iron
 - Copper tube
- Condensing: Low temp high efficiency boilers
 - Stainless Steel
 - ➤ Aluminum

Other Sources of Heat

- Electric boilers
- Hydronic heat pumps

Types of Chillers

- Reciprocating
- Rotary screw
- Centrifugal (shown)
- Absorption

Where is What Used?

Most common

- Large chilled water plants Centrifugal
- Mid-range size application Rotary Screw

Less common

- Smaller size application Reciprocating
- Inexpensive source of steam or heat Absorption

Combinations of the above

Refrigeration Cycle

Condenser Head Pressure Control

With centrifugal chillers a minimum supply water

temperature is needed to:

- Maintain optimum efficiency
- Maintain a minimum pressure differential between condenser and evaporator
- Prevent pressure imbalance

Hermetic Compressor Guidelines

- Condenser water temperature > 75 °F.
- Establish 75 °F within 15 minutes.
- N/O condenser water throttling valve.
- Constant condenser water flow.
- Water temperature control through fan modulation, or other methods

Open Compressor Guidelines

- Condenser water temperature > 55 °F.
- N/O condenser water throttling valve.
- Constant condenser water flow.
- Water temperature control through fan modulation, or other methods

Cooling Towers – Evaporative Cooler

Induced Draft, Counter-flow Tower Forced Draft, Cross-flow Tower

Condenser Water Piping Above Grade

Improper High Suction Piping

Economizers – Goal/Definitions

- Mechanical devices intended to reduce energy consumption or to perform another useful function such as precooling a fluid.
- Airside economizers use cool outside air directly as a means of cooling the indoor space.
- Waterside economizers use cooled water indirectly as a means of cooling the indoor space.
- Numerous design variations of waterside economizers typically they utilize a cooling tower and heat exchanger to indirectly cool the chilled water loop, which is used to reject heat from the building via the hydronic coils.

2 Identical Cooling Towers & Plate & Frame HX Winter Cycle – Chillers Off – Economizer

Economizer System Design Alternative

Cooling Tower and Heat Exchanger Two Identical Cooling Towers Each Tower Sized for 50% of Summer Load Winter Load is less than 50% of Summer Load **Design Considerations** Lower first cost alternative Run Both Towers in Summer Mode Drain One Tower During Winter Run Only Winter Tower in Economizer Mode Freeze Protection Required Run Both Towers when Load Shaving

2 Identical Cooling Towers & Plate & Frame HX Summer Cycle – Chillers On

HYDRAULIC INSTITUTE

2 Identical Cooling Towers & Plate & Frame HX Winter Cycle – Chillers Off – Economizer

2 Identical Cooling Towers & Plate & Frame HX Summer Cycle – Chillers On – Load Shaving

2 Identical Cooling Towers & Plate & Frame HX Winter Cycle – Chillers Off – Economizer

Expansion Tanks – Hydronic Systems

- Why is a tank needed?
- Absorb system expansion due to temperature change.
- Provides minimum pressure.
 - Keep the system full
 - Vent air bubbles
 - Prevent cavitation at pump, valves
- Provide a reliable system pressure reference

Closed Loop Requirements

- Must be able to rid the system of un-necessary air.
- Prevent loss of water, reduce need for make up and avoid water damage.
- Need to control, and limit, pressure.
 - Think of a "pressure band" with upper and lower limits.
 - Initial pressure is the lower limit.

Pressure Reducing Valve (PRV)

Fills the system from the city water supply. Establishes minimum fill pressure.

Consider:

- System height above fill point
- Desired residual pressure at the
- Pump NPSHR and location
- Install near expansion tank

Relief Valve

- Needed on boiler and chilled water side to limit system pressure.
- This is the upper limit of the "band"

Air Management in Closed Systems

Air Control

- Mechanical pump seal
- Standard tank
- Manual air vents
- An air separator

Air Elimination

- Mechanical pump seal
- Diaphragm or bladder

tank

- Automatic vents
- An air separator

Standard Compression Tank

Used in "Air Control" strategies

Standard Tank Installation

Diaphragm Tank

"Acceptance volume"

Used in "Air Elimination" strategies

Bladder Tanks

Full Acceptance

Partial Acceptance

Used in "Air Elimination" strategies

Diaphragm Tank Installation

Tank Sizing and Selection

- Must satisfy two conditions:
 - The volume of the tank must be large enough so that the system operates within the range of the initial fill pressure and the relief valve setting.
 - The tank's <u>acceptance volume</u> must be at least as large as the system's expansion volume.

Tank Location - Installation

PNPC – Point of No Pressure Change

Air Separators

The place we want to remove air:

- Lowest Pressure
- Highest Temperature

Types of Air Separators

- Use centrifugal force
- Use coalescence

Centrifugal Air Separator

To Standard Tank or Vent

System Inlet

System Outlet

How Does a Centrifugal Air Separator Work?

Tangential design

- Induces centrifugal action as water enters tank
 - Heavy, air-free water forced to exterior of vessel. Lighter, air-filled water forced into center of tank
 - Separated air collects in center and rises to air vent or compression tank

Velocity reduction

- Tank body sized 3x the inlet/outlet nozzle size
 - Allows air to come out of solution

Coalescing Removal Separator

Velocity Reduction

- Tank body 2x inlet/outlet nozzles
- Medium inside tank provides surface
- area for air and sediment to "stick" to
 - Medium "pulls" entrained air and sediment out of solution

Low inlet velocity critical

- Low fluid speed necessary to "pull" air out of solution
- Coalescing medium increases pressure drop

Fan Coils

Life Cycle Concerns – Design Risk

Traditional Pump Selection Energy Savings

	Traditional selection (left of BEP):	Operating point at 50% design flow:
Duty	1250gpm at 70ft	625gpm at 38.5ft
	79.1%	67.1%
Power	27.9 bhp	9.06 bhp
Efficie	ency 67.5% ENERGY SAVINGS	<u>Below</u> ASHRAE 90.1 requirements!

Pump Selection

- •Selection to right of BEP
- •1250gpm at 70ft
- •68.1% efficiency

•32.5bhp

Pump Selection at 50% Flow

Pump Selection Energy Savings

	Pump selection:	Operating point at 50% design flow:	
Duty	1250gpm at 70ft	625gpm at 38.5ft	
Efficiency	68.1%	83.2%	
Power	32.5bhp	7.31bhp	

77.5%ENERGY
SAVINGS
Exceeds
ASHRAE 90.1
requirements!

Installed Cost - Space

Installed Cost – Ancillaries and Accessories

Installed Cost – Ancillaries and Accessories

VFD Mounting and Wiring

Sensor Acquisition and Installation

Harmonic and RFI Filtering

Thermistors and Space Heaters

Energy and Flow Metering

Other Life Cycle Concerns – Reliability and Maintenance

This is often a lower specification and buying priority

Optimized Capacity and Motor Power

- Impeller trim is optimized to the motor power
- Electronic load limiting ensures that motor power is not exceeded

Motor sizing optimized to BEP – no oversized motors

Other Life Cycle Concerns – Ease of Commissioning

Required adjustments are often impractical or delayed, resulting in wasted energy saving opportunities

BMS Parallel Control

3-pump variable speed curves

Benefits of parallel operation versus traditional BMS parallel pump control

• Energy savings

- Typical 3-pump variable flow system / 50% average load / 40hp mtrs
- BMS operating cost* ~ \$30, 371
- Parallel Sensorless Pump Control operating cost* ~ \$20,092
- 72.5 metric tons CO₂ or equivalent
- Parallel Sensorless pump control saved <u>34%</u> energy costs

*Based on \$0.10/kWh – 12-months operation – 40% design head min pressure

Redundancy - Impact on Heating or Cooling Output

Energy Savings: Chiller and Cooling Tower

Using an all-variable plant:

- lowers the chiller's condenser pressure requirement
- lowers the chiller's energy consumption
- enables higher tower performance
- enables better system efficiency through improved balancing of air and water flow ratios

Integrated control pumps can be used with ultra-high-efficiency plant controllers to provide energy savings.

Flow Control & DHW

Throttle Control

- Valve throttling increases system head resulting in excess power consumption
- Excess energy noted in blue area
- Excess energy impacts equipment reliability

By-Passing

- Bypass lines require more flow, which results in excess power consumption.
- Excess energy impacts equipment reliability

Variable Speed Control

- No excess energy used by the system
- Reliability is maximized

Variable Speed Pumping

- Why use a variable speed pump?
- When to use variable speed?
- When not to use variable speed?

Source: Section supplied by Manitoba Hydro

Change Pump Speed To Match Load

- Slower motor
- Two-speed motor*
- Changes to belt drives/gears*
- Variable Speed Drives
 - Variable Frequency Drive
 - Magnetic Drive
 - Fluid Drive

Affinity Laws

•Flow is Proportional to shaft speed (Q1/Q2) = (N1/N2)

Pressure is Proportional to square of shaft speed (H1/H2) = (N1/N2)**2

Power is Proportional to cube of shaft speed (P1/P2) = (N1/N2)**3

Impact of Affinity Law

RPM	GPM	PSI	НР	% savings
3500	325	65	20	
3250	301.8	56.0	12.8	36%
3000	278.6	47.8	7.9	60%

3000/3500 - 14% reduction = 60% HP reduction

Why use a Variable Speed Pump?

• Take advantage of the affinity rules of Centrifugal Pumps

Traditional Flow Control

Most of the buildings in the 1970s used two basic types of flow control:

- flow bypasses, or
- throttling discharge valves with trimmed pump impellers.

Bypass arrangements is the least efficient and least used method of flow control.

Throttling control does save energy compared to bypass methods; a variable speed operation can save much more energy.

Traditional Variable Flow Systems with a DP Sensor

Modern Control with Differential Pressure Sensor

The building industry has transitioned to using variable speed pumps with two-way valves to achieve variable flow.

Today, a system is composed of the pump, VFD, sensor, and two way valve to control HVAC systems.

Energy Metering Capability

The Variable Speed Drive can be used:

As an energy meter for energy measurement verification, and For trending analysis towards demand response

Traditional Chiller Plant Control Process Set-point Based

Automation Sequence

Parallel equipment staging (up/down)

Equipment speed control

Silo sub-system control

Traditional Logic

Capacity based sequencing

PID feedback control loops

Ambient reset

Integrated Plant Control Why Should You Be Interested?

Two-Way Valve Control

- Variable Flow Through Coil
- Variable Flow Through System

Two-Way Valve Balance

Linear Stem Valves - Globe Valve

Control Valve Characteristics

Why Balance? Two-Pipe Direct Return Has Unequal Branch Differential Pressures

Flow Is Proportional To ΔP

If all branches require the same design pressure drop:

- Branch 1 gets more flow than 2 or 3
- Branch 2 or 3 may get less than design flow
- Design temperature drops aren't as predicted
- System will use more pumping horsepower (more flow)

Balancing, The Obvious Answer

- Maximum branch flows need to be controlled
- Balancing valves are one solution
- Pressure independent flow control is another method
 - Prevents overflow conditions in branch

Achieving Flow Control

Two areas of concern:

- 1. Obtaining accurate, stable control of flow in the design range
 - Responsibility Modulating temperature control valve
- 2. Preventing excess flow
 - Responsibility balance device

PICV vs Globe Valve in Operation

Pressure Independent Control Valve

Benefits of PICV

- Pressure Independent Control Valves maintain 100% authority at all times
- Improve system efficiency
- Lower system energy cost
- Provide stable flow and higher ΔT
- An integrated solution replaces balance and temperature control valves

Takeaways

- Source Equipment
 - Boilers Condensing vs Non-condensing
 - Chillers Centrifugal & Rotary Screw
 - Head Pressure Control
- Cooling Towers/Economizer
 - Good piping design
 - Integrated Waterside Economizer (Load Shaving)
- Expansion Tanks
 - Air Control vs Air Elimination
 - System pressure reference & PNPC
 - Cold fill pressure & thermal expansion

Takeaways

- Air Separators
 - Install at low pressure and high temperature
 - Centrifugal & coalescing air separators
- Heat Emitters (Fan coils, AHU)
 - Coil characteristic curves
- Control Valves
 - Pressure Dependent vs Pressure Independent
 - Inherent Characteristic
 - Branch Authority
- Balance Valves & Automatic Flow Limiters
 - Pressure Dependent vs Pressure Independent

Speed Range: Elements

- VFD's typically offer a frequency range of 0 to 60 Hz normal speed. Most applications will only use a portion of the available frequency range.
- An application may only operate at one frequency, or it may operate throughout a range of frequencies, depending on process requirements.
- It is important to understand and define the range of variable speed required, as this may impact the sizing of VFD's and / or Motors.
- The Speed Range (turndown) of Pumps / Motors is usually specified as a ratio of nominal Motor synchronous speed to minimum speed.
- Basically simple division math
 - 2:1 (3600 1800 rpm), 4:1 (1800 to 450 rpm), 10:1 (3600 to 360 rpm), etc.

Operating Principles

- When a VFD starts a motor, it initially applies a low frequency and voltage to the motor. The initial starting frequency is typically 2 Hz or less.
- The VFD will then ramp up the output <u>frequency</u> and <u>voltage</u> to a desired set point.

[When the startup torque is lowered]

Typical VFD Features

- Adjustable electronic motor overload
- Instantaneous over-current / short circuit protection
- Ground fault (motor circuit)
- Under / over voltage protection
- Under current (no flow / dry run)
- Surge arrestors
- Forward / Reverse operation without the use of contactors
- Multiple Acceleration and Deceleration ramp rates
- Critical frequency avoidance (skip frequencies)
- Multiple stopping modes: Coast, Ramp or Dynamic Brake
- Process variable control
- Power Filters (DC-Chokes, EMI filter, Harmonic filters)
- Programmable Logic Controller

Application Considerations for VFDs

- Pump selection and operating speed range:
 - Verify that the operating points throughout the speed range meet the desired head and flow conditions.
- Maximum and minimum speeds:
 - Verify that the pump and motor can safely operate at these speeds and meet the requirements of the application. For instance, flow or pressure requirements.
- Motor Selection considerations: (Consult the motor manufacturer)
 - Distance motor is located from frequency drive
 - Motor winding insulation class
 - Bearings type: standard versus insulated bearings
 - Protection: Temperature, vibration, shaft grounding brushes
 - Hazardous locations

Application Considerations for VFDs

- Vibration:
 - > Any critical / resonant frequencies to avoid
- Pump specific functions:
 - Cavitation protection, pipe fill, pipe burst, pipe blockage, deragging etc.
- Communication

VFD Selection Considerations

Voltage:

- What is the Voltage available on site?
- Does the VFD rated output V = Motor V?
- Single phase input?

Amps:

- Motor Full Load Amps: Is the VFD output rating sufficient?
- Motor Service Factor Amps: Will the motor run into the SF?
- Load type: Variable Torque (110%) or Constant Torque (150%)?

Environment:

- Temperature: Is Enclosure cooling or Heating needed?
- Ingress protection: Dust, moisture, corrosive gas?
- Elevation: More than 3,300ft above sea level?
- Hazardous location: Explosion proof?

VFD Selection Considerations

Motor cable length

- VFD output filters to protect motors or to avoid nuisance tripping issues:
 - Output sine wave filters
 - > dV/dt Filters
 - Common mode filters
- Consider the motor, pump, and drive as a complete system.

Power Source Harmonic level: IEEE 519

- Line reactors
- DC Link chokes
- Active or Passive Harmonic Filter
- 12, 18 or 24 pulse rectifier VFD
- Active front end VFD

VFD Selection Considerations

- Motor FLA amps are best (HP is not as accurate)
- Line Voltage & Phase (480v 3-phase or 230v single)
- Connected load type: Constant Torque / Variable Torque
- Enclosure requirements (NEMA 1, 12, 3R, 4 etc.)
- Motor Nameplate Data (full load current, rpm, etc.)
- Is motor insulation class 1000v or 1600v rated?
- Manual & automatic control signals
- Speed range. Ex. 0-60hz vs over-speeding to 70hz
- Duty Cycle requirements

Summary

- Pump systems are big energy users
- Follow the plan as outlined in this workshop
- Operating (energy) and maintenance comprise 83% of the Life Cycle Cost of a typical pump system
- Look beyond energy savings
- System assessment/optimization should Focus on improving the reliability/efficiency of the system

Thank you for your attendance

